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Mechanisms for the degeneration of large-scale interfacial gravity waves are identified
for lakes in which the effects of the Earth’s rotation can be neglected. By assuming
a simple two-layer model and comparing the timescales over which each of these
degeneration mechanisms act, regimes are defined in which particular processes are
expected to dominate. The boundaries of these regimes are expressed in terms of two
lengthscale ratios: the ratio of the amplitude of the initial wave to the depth of the
thermocline, and the ratio of the depth of the thermocline to the overall depth of
the lake. Comparison of the predictions of this timescale analysis with the results
from both laboratory experiments and field observations confirms its applicability.
The results suggest that, for small to medium sized lakes subject to a relatively
uniform windstress, an important mechanism for the degeneration of large-scale
internal waves is the generation of solitons by nonlinear steepening. Since solitons
are likely to break at the sloping boundaries, leading to localized turbulent mixing
and enhanced dissipation, the transfer of energy from an initial basin-scale seiche to
shorter solitons has important implications for the lake ecology.

1. Introduction
Since internal waves play an important role in driving mixing in stratified lakes

and reservoirs, our efforts to predict water quality require an understanding of
the dynamics of the internal wavefield (Mortimer & Horn 1982; Imberger 1994).
Considerable progress has been made on quantifying the sources and sinks of energy,
but surprisingly little work has been undertaken on the way in which energy is
transferred within the internal wavefield.

In lakes the major source of energy for the internal wavefield is the action of the
wind over the surface of the lake, generating large-scale internal gravity waves with
relatively low frequency. In small to medium sized lakes, in which the effects of the
Earth’s rotation can be neglected, the dominant response is a basin-scale standing
wave known as an internal seiche (Mortimer 1974). Even when the wind does not
blow for sufficient duration to generate a true standing wave (Spigel & Imberger
1980), the horizontal extent of the thermocline displacement is of the same order as
the basin length and we will refer to these waves as basin-scale internal waves. For
internal gravity waves, the Earth’s rotation can be neglected in lakes with widths
less than the Rossby radius of deformation which for mid-latitude lakes equates to
widths of less than approximately 4–5 km (Hutter 1991). In lakes in which the Earth’s
rotation is important, the response to an applied wind stress is the generation of
Kelvin and Poincaré waves (Mortimer 1974; Saggio & Imberger 1998). In most lakes
the wind can also generate topographic waves (very low-frequency rotational waves).
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Perhaps surprisingly, these rotational waves can exist in lakes in which the Earth’s
rotation can be neglected for internal gravity waves and, in some lakes, may play an
important role in the dynamics (Stocker & Hutter 1987). However, topographic waves
in lakes are still poorly understood and their identification from field data is difficult.
In this paper we neglect topographical waves, considering only internal gravity waves,
and we neglect the Earth’s rotation so the analysis applies only to small to medium
sized, or long narrow lakes. In particular, we consider the situation where the wind
stress is relatively uniform and the surrounding orography is simple.

Although the wind energizes the low-frequency basin-scale internal waves, field ex-
periments indicate that the internal wavefield has a continuous spectrum ranging from
these low-frequency standing waves through to waves with frequencies approaching
the buoyancy frequency (e.g. Thorpe 1977; Thorpe et al. 1996; Saggio & Imberger
1998). Furthermore, field observations show that the wind-forced basin-scale waves
decay at a rate far greater than can be accounted for simply by internal dissipa-
tion (Imberger 1994; Stevens et al. 1996). The observed decay times require that
other mechanisms must act to transfer energy from these basin-scale waves to either
smaller-scale waves or to turbulent scales. Possible mechanisms that are likely to result
in such energy transfers include: (i) nonlinear steepening, (ii) shear instabilities, (iii)
shoaling and reflection at sloping boundaries, and (iv) interaction with topography.

Field studies have found that large-scale internal waves often take the form of an
internal surge or a packet of internal solitons, generated by the nonlinear steepening
of an initial finite-amplitude wave (e.g. Hunkins & Fliegel 1973; Thorpe 1977; Farmer
1978; Wiegand & Carmack 1986). Since these solitons are of much shorter length than
the wind-induced initial large-scale thermocline displacement, their generation results
in a transfer of energy within the internal wavefield from large to smaller scales.
Numerical modelling has also demonstrated the importance of nonlinear steepening
of initial basin-scale waves and the generation of small-scale nonlinear waves by wind
(Hutter et al. 1998).

Field observations also suggest that the shoaling and reflection of large-scale
internal waves at lake boundaries plays a major role in the generation of smaller-
scale internal waves. Large internal waves can interact with local topography such as
sills and headlands, radiating high-frequency waves (Thorpe 1998; Thorpe et al. 1996).
Imberger (1994) postulated that the waves identified by the high-frequency peaks in
the Lake Biwa isotherm displacement spectra were generated by the interaction of the
basin-scale waves with the lake boundaries. The shoaling and reflection of internal
waves is also thought to play a major role in driving the turbulence in the benthic
boundary layer (Ivey & Nokes 1989; Imberger 1994). Whether by the generation of
smaller-scale internal waves or by driving turbulence in the benthic boundary layer,
interaction with the boundaries contributes to the decay of large internal waves.

Observations in the ocean (Woods 1968) and in lakes (Thorpe et al. 1977) have
confirmed that propagating internal waves can induce sufficient shear to cause Kelvin–
Helmholtz instabilities. The turbulent collapse of Kelvin–Helmholtz billows leads in
turn to patches of high dissipation and mixing, the whole chain of events thus
providing a mechanism for the transfer of energy from the large-scale waves to
mixing at smaller scales. Whereas the maximum shear for propagating internal waves
is at the crests and troughs, the maximum shear for standing waves is at the node
points. Although laboratory studies have confirmed that standing waves may generate
shear instabilities (Thope 1968), no field observations have been reported of Kelvin–
Helmholtz billows at the node of a basin-scale seiche.

The relative importance of each of these mechanisms and the energy transfers
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associated with them in lakes are yet to be quantified. Since in lakes exposed to
a uniform wind stress most energy enters the internal wavefield at the large scale
(Mortimer 1974), we examine here the degeneration of the large-scale waves and
the resulting transfer of energy from these waves to smaller scales. In particular,
we examine the degeneration of an initial basin-scale internal standing wave that
is generated by the relaxation of an initially tilted density interface. In § 2 we use
a simple two-layer rectangular model to derive the timescales over which these
degeneration processes operate. The relative ordering of these timescales is then used
to identify regimes in which particular mechanisms would be expected to dominate
the degeneration of basin-scale internal waves. In §§ 3 and 4 we compare our model
predictions with the results of laboratory experiments and field observations to
demonstrate the applicability of the regimes. We then briefly discuss the consequences
of these processes for the energy cascade and for water quality in lakes.

2. Derivation of timescales and regimes
2.1. Initial conditions: the set-up of the interface

Field observations (e.g. Mortimer 1952; Imberger 1985) and laboratory experiments
(e.g. Wu 1977; Monismith 1986; Stevens & Imberger 1996) have confirmed that wind
blowing over the surface of a lake transports the less-dense surface water towards
the leeward end, tilting the free surface up and the thermocline down. The response
is complicated by such factors as the unsteady nature of the wind, deepening of the
surface layer and by any pre-existing background circulation and internal wavefield.

A key parameter determining the response of a lake to a wind event is the
Wedderburn number, W (Thompson & Imberger 1980), defined as the ratio of the
surface layer Richardson number to the aspect ratio

W =
Ri

L/h1

=
g′h2

1

u2∗L
(2.1)

where u∗ is related to the applied wind stress by τ = ρu2∗, h1 is the depth of the
surface layer, g′ = (∆ρ/ρ0)g, ∆ρ is the density difference between the epilimnion and
the hypolimnion, ρ0 is some reference density and L the length of the lake. Spigel
& Imberger (1980) classified the response of a lake to a given wind event into four
regimes. Of particular importance is the regime boundary at W ≈ 1. For W 6 1
(Spigel & Imberger’s regimes 1 and 2) the steady state does not generally result
in a tilted thermocline but in substantial or complete mixing of the lake. However,
for W > 1 (Spigel & Imberger’s regimes 3 and 4) the interface oscillates about an
equilibrium tilt of θ ≈ u2∗/g′h1. If the wind continues to blow, the seiching is eventually
damped and a steady-state tilt results.

When the wind stress is removed the lake adjusts to return to its original state
with the thermocline horizontal. The amplitude of the resulting seiche will depend on
the strength and duration of the wind event but is limited by the maximum interface
displacement (Monismith 1987)

ζmax =
Lu2∗
g′h1

. (2.2)

From (2.1) we have ζmax/h1 = W−1.
The analysis and laboratory experiments described below assume an initial con-

dition consisting of a tilted density interface and apply equally to basin-scale internal
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waves generated during the set-up of the thermocline and to those generated by the
subsequent relaxation of the thermocline after the removal of the applied wind stress.

2.2. Two-layer model

Before proceeding to investigate the mechanisms that contribute to the degeneration
of the internal seiche it is useful to introduce a simple model from which the major
features of the flow can later be extracted. We initially consider a two-layer rectangular
basin in which the subscripts i = 1 and 2 are used to denote the upper and lower
fluids respectively, so that the fluid in each layer has a constant density ρi and an
equilibrium depth hi. We shall use the spatial coordinates x and z with z being
directed vertically upward. The deflection of the free surface is given by ζ1(x, t) and
that of the internal interface by ζ12(x, t).

In a two-dimensional non-rotating system, ignoring viscous effects, we consider
small-amplitude motions and make the hydrostatic approximation. It is useful to
introduce the layer average velocities Ui where

Ui =
1

hi

∫
layer

ui dz.

The horizontal momentum equations for each layer can now be written (e.g. Spigel
1978) as

∂U1

∂t
= g

∂ζ1

∂x
, (2.3)

∂U2

∂t
= g

∂ζ1

∂x
+ g′

∂ζ12

∂x
. (2.4)

Since the deflection of the free surface is small compared with the deflection of the
internal interface, conservation of volume can be approximated as h1U1 = −h2U2.
Making use of conservation of volume to eliminate U1, (2.3) and (2.4) can be combined
to give

∂U2

∂t
+
g′h1

H

∂ζ12

∂x
= 0. (2.5)

Applying conservation of volume to the lower layer we also have

∂U2

∂x
+

1

h2

∂ζ12

∂t
= 0. (2.6)

We can combine (2.5) and (2.6) in the form(
∂U2

∂t
+ co

∂U2

∂x

)
+
co

h2

(
∂ζ12

∂t
+ co

∂ζ12

∂x

)
= 0 (2.7)

where co is the linear long-wave speed

co = ±
(
g′
h1h2

H

)1/2

. (2.8)

We recognize D/Dt = ∂/∂t ± co∂/∂x as the directional derivative along the charac-
teristic curves dx/dt = ±co, so we can rewrite equation (2.7) as

D

Dt

(
U2 ± co

h2

ζ12

)
= 0 along

dx

dt
= ±co. (2.9)

We can now determine the values of U2 and ζ12 at some point (x, t) by integrating
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t = 0
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Figure 1. Schematic illustration of the basin-scale wave resulting from a tilted interface. The
interface position and layer velocities are shown at intervals over one internal wave period Ti.
The maximum layer velocities occur at t = Ti/4 and t = 3Ti/4. Note the asymmetry in the layer
velocities since h1U1 = h2U2 and h1 < h2.

equation (2.9) along the characteristic curves that pass through the point (x, t) and
by using the initial conditions. Conservation of volume then yields U1.

The initial conditions used in our experimental study, described in § 3, consist of
a tilted interface, where the maximum displacement of the interface is denoted by
ηo, and with no motion so that U1 = U2 = 0. While these conditions exactly match
the tilting tube experiments, they also approximate the theoretical linear steady-
state response of a reservoir to an applied uniform wind stress in the absence of
entrainment (Spigel & Imberger 1980). The main features of the flow resulting from
these initial conditions are summarized in figure 1. The flow is periodic with a period
Ti = 2L/co with the maximum velocities occurring when the interface is horizontal
at t = Ti/4, 3Ti/4, 5Ti/4 . . . . For initial conditions consisting of a tilted interface, the
layer velocities increase linearly from zero at the ends of the basin to a maximum at
the centre of the tank, so that

Ui = Ûi

2x

L
for x 6

L

2
(2.10)

where Ûi is the layer velocity at the centre of the basin. Before the flow reverses at
t = Ti/4, the layer velocities at the centre of the tank are given by

Û1 = g′
h2

H

2ηo
L
t, (2.11)

Û2 = −g′ h1

H

2ηo
L
t. (2.12)
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2.3. Shear instabilities

The internal standing wave shown in figure 1 results in substantial interfacial shear
that is periodic and has a maximum value at the node when the interface is horizontal.
From (2.11) and (2.12), for t 6 Ti/4 the shear at the node is given by

∆Û = Û1 − Û2 = g′
2ηo
L
t. (2.13)

The lengthscale over which the velocity shear occurs is imposed by the finite thickness
of the density interface, δρ, so we can define a local Richardson number

Ri =
g′δρ

(∆Û)2
. (2.14)

Based on a stability criterion of Ri > 0.25 and the assumption that the shear
is steady, the minimum shear necessary for Kelvin–Helmholtz billows is thus ∆Û =
2(g′δρ)1/2. Since the wave-induced shear initially increases with time, the flow is always
stable before the time

TKH =
L

ηo

(
δρ

g′

)1/2

. (2.15)

If TKH > Ti/4 the flow will remain stable since the shear first reaches its maximum
value at Ti/4, although we note (2.15) takes no account of the finite time required
for the growth of the unstable waves that eventually form the billows. In a series of
laboratory experiments using a tilting tube (Thorpe 1971) found that for accelerating
flows the Richardson number at which billows appeared was well below the critical
value of 0.25, suggesting that (2.15) will underestimate the time at which shear
instabilities would be observed.

The quasi-steady approximation is good only if the timescale for the growth of
billows is much shorter than Ti/4. Corcos & Sherman (1976) estimated that the
time for billows to grow to maximum amplitude was 5∆U/g′, which for the basin-
scale wave is given by (2.5ηo/L)Ti. Thus, for the steady flow assumption to be valid
we require ηo/L � 0.1, which will be true for most lakes and for our laboratory
experiments.

Equation (2.15) also ignores viscous effects which act to stabilize the flow. Viscosity
reduces the actual velocities below those predicted by the inviscid model on which the
analysis is based and reduces the velocity gradients across the interface, increasing Ri
(Thorpe 1971). Using the relation given in the appendix of Thorpe (1971), the time
at which the billows are expected will increase by the factor given by

Q =
1

2

{
1 +

(
1 + 4

(
νt

δ2
ρ

))1/2
}
. (2.16)

The shear instability timescale TKH applies to basin-scale standing internal waves
where the maximum shear is located at the node. Kelvin–Helmholtz instabilities can
still be generated by the shear induced by smaller-scale propagating internal waves.
Large solitary waves and surges, for example, are able to generate considerable
interfacial shear, especially if superimposed on the background shear of a basin-scale
seiche.

2.4. Nonlinear steepening

Most previous analytical studies of basin-scale internal waves in lakes have been
based on linear theory. However, field observations have shown that the amplitude of
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the internal seiche is generally large enough that nonlinear effects become significant
(e.g. Hunkins & Fliegel 1973; Thorpe 1977; Farmer 1978; Mortimer & Horn 1982;
Wiegand & Carmack 1986). Furthermore, numerical studies have confirmed the
importance of nonlinear effects in generating the small-scale features that are typically
observed in field data (Hutter et al. 1998). Hammack & Segur (1978) present modelling
criteria for long surface water waves, the results of which are useful when considering
the importance of nonlinear and dispersive effects for long internal gravity waves.

The initial steepening of a finite-amplitude long wave due to nonlinear effects can
be described by the nonlinear non-dispersive wave equation (e.g. Hammack & Segur
1978; Long 1972)

∂η

∂t
+ co

∂η

∂x
+ αη

∂η

∂x
= 0 (2.17)

where α = 3
2
co(h1 − h2)/h1h2. Here η is defined as positive upwards, so for the case of

a thin upper layer (h1 < h2), only an initial wave of depression (η < 1) will steepen.
Balancing the unsteady and nonlinear terms leads to a steepening timescale Ts for a
basin-scale wave of length L and amplitude ηo

Ts ∼ L

αηo
. (2.18)

This is the classical result (Lighthill 1978, e.g. see equation 188) and is similar to the
sorting time demonstrated by Hammack & Segur (1974) and the breaking timescale
derived by Farmer (1978). We will initially take the constant of proportionality to be
1 and will verify this value using the experimental data presented in § 3.2. The rate
of nonlinear steepening depends on |ηo/h1|, increasing as the surface layer becomes
thin or as the amplitude of the initial basin-scale wave increases. Note that when the
interface is at mid-depth the nonlinear coefficient vanishes (α = 0).

As the wave steepens its horizontal lengthscale decreases until the dispersive terms
can no longer be neglected (see Hammack & Segur 1978). Eventually, a balance
between nonlinear steepening and dispersion leads to the evolution of solitary waves,
a process described by the Korteweg–de Vries (KdV) equation

∂η

∂t
+ co

∂η

∂x
+ αη

∂η

∂x
+ β

∂3η

∂x3
= 0 (2.19)

where β = 1
6
coh1h2. In this way, large-scale waves can degenerate on the steepening

timescale Ts into solitary waves, transferring energy within the internal wavefield
from the basin scale to shorter waves.

2.5. Internal bores

Field studies have sometimes described the passage of propagating internal hydraulic
jumps or bores, so we consider whether these features could be associated with the
degeneration of an initial seiche. In this paper we use the terms internal hydraulic jump
and internal bore to describe the nonlinear front generated by supercritical conditions.
These are not to be confused with the term internal surge which we use to describe
a steep fronted nonlinear wave that is not necessarily the result of supercritical
conditions but is usually due to the nonlinear steepening of a finite-amplitude wave.

In a two-layer model, when the initially inclined interface relaxes, the velocities
in each layer are in opposite directions and the velocity is greatest in the thinner
layer. We can define upper and lower layer Froude numbers as F2

1 = U2
1/g

′h1 and
F2

2 = U2
2/g

′h2, in which case the critical condition is determined by F2
1 +F2

2 = 1 (Wood
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& Simpson 1984). Since the layer velocities have a maximum value in the centre of
the basin and are zero at the ends, if the amplitude of the motion is sufficiently great,
the flow may be supercritical (F2

1 + F2
2 > 1) over some region in the middle of the

basin but must be subcritical at each of the ends. An internal hydraulic jump, or
bore, links the supercritical region with the downstream (relative to the fast flowing
thin layer) subcritical region; no jump is required to link the upstream (relative to
the thin layer) subcritical region with the supercritical region. The time at which the
flow first becomes supercritical can be calculated by setting Û2

1/g
′h1 + Û2

2/g
′h2 = 1,

where Û1 and Û2 are given by (2.11) and (2.12). After some manipulation, it can be
shown that the time at which the flow becomes supercritical is

Tb =
Ti

4

h1

ηo

(
Hh2

2

h3
1 + h3

2

)1/2

. (2.20)

Since the flow is periodic, the layer velocities initially increase until a time t = Ti/4
and then decrease until they reverse direction at t = Ti/2; if Tb > Ti/4 the flow never
becomes supercritical and a bore of this type will not form.

An important property of hydraulic jumps and bores is that they are associated
with an energy loss across the jump. This energy can be lost to dissipation and
mixing in the case of a turbulent bore, to waves in the case of an undular bore, or
to a combination of these. As energy is lost the bore evolves into a train of solitons,
transferring energy from the basin-scale wave to waves of much shorter wavelength.
Although the solitons that evolve from the supercritical condition are very similar to
the waves generated by the nonlinear steepening of the initial basin-scale wave, the
generation mechanisms are quite different in the two cases.

2.6. Viscous damping

The analysis so far has ignored viscous damping. A useful dissipative timescale is the
e-folding timescale for the amplitude decay of an initial internal standing wave:

Td =
Ti

γd
(2.21)

where γd is the decay modulus and is a measure of the energy lost during one internal
wave period, such that 2γd = dE/E (Keulegan 1959). Spigel & Imberger (1980)
estimated γd for lakes by balancing the energy dissipated in the turbulent boundary
layer with the energy of the internal seiche. They demonstrated that the decay could
be described well by the simple estimate of γd given by

γd =
δbAb

V
(2.22)

where the thickness of the turbulent boundary layer is estimated using δb=UmaxT
1/2
i e/

(471ν1/2) and e is the sand grain roughness, Ab is the area of the solid boundary and
V the volume of the lake.

For the laboratory experiments described in § 3 we must also consider the losses
at the rigid lid and in the interfacial shear layer (since the interface thickness is of
the same order as the boundary layers). We therefore derive a separate expression
for the decay modulus for the laboratory experiments based on the two-layer model
described in § 2.2.

The average dissipation of energy E per unit area in an oscillatory boundary layer
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over one period is given by (Batchelor 1967)

dE

dt
= −µU

2

2δρ
(2.23)

where µ is the viscosity, and U is the maximum velocity outside the boundary
layer. In the laboratory the thickness of the laminar boundary layer is given by
δb = (νTi/π)1/2 Batchelor 1967. For the internal shear layer the velocity scale is ∆U,
and the lengthscale can be approximated by the interface thickness, δρ.

For the linear two-layer model described in § 2.2, (2.23) can be integrated over the
area of the solid boundaries for each layer (neglecting the endwalls), Abi , and over
the area of the interface, Aρ. Since, for the linear standing wave generated by a tilted

interface, Ui = Ûi2x/L (x 6 L/2) and U1h1 = −U2h2 it can be shown that

dE

dt
= −

∫
Ab1

µU2
1

2δb
dA−

∫
Ab2

µU2
2

2δb
dA−

∫
Aρ

µ∆U2

2δρ
dA

= − µL
6δb

(Û2
1(2h1 + B) + Û2

2(2h2 + B))− µL

6δρ
(∆Û2)B

= −µLÛ
2
2

6δb

((
h2

h1

)2

(2h1 + B) + (2h2 + B)

)
− µL∆Û2

6δρ
B (2.24)

where Abi = L(2hi + B), Aρ = LB and L and B are the length and width of the fluid.
The first term on the right-hand side of (2.24) is the loss at the solid boundaries and
the second term is the loss in the interfacial shear layer.

The total energy of the standing internal wave is given by

E =
ρoBL

6

(
Û2

1h1 + Û2
2h2

)
=
ρoBL

6

h2

h1

Û2
2. (2.25)

Following Spigel (1980), we can use (2.24) and (2.25) to estimate the fraction of
wave energy dissipated each wave period. After some manipulation and recalling that
δb = (νTi/π)1/2 it can be shown that

dE

E
=
πδbAb

V
+
νHTi

δρh1h2

= 2γd (2.26)

where Ab is the total area of the solid boundaries and V is the total volume. For
determining the damping timescale we use (2.26) for the laboratory experiments and
(2.22) when considering field data.

2.7. Regimes

Depending on the relative ordering of the degeneration timescales described above,
a number of regimes can be defined in which a particular mechanism is expected to
dominate. In a continuously accelerating flow the fastest timescales would be those
associated with supercritical flow (Tb) when h1/H is less than about 0.25 and shear
instabilities (TKH ) for h1/H is greater than about 0.25 (the transition also depends
on the interface thickness). However, in the case where the flow is generated by a
basin-scale standing wave, the periodic nature of the flow limits the magnitude of the
layer velocities. This restricts the regimes in which bores or billows will be found to
those in which TKH < Ti/4 or Tb < Ti/4 whereas nonlinear steepening and viscous
damping can operate continuously over multiple wave periods.

By equating timescales, the regime boundaries can be calculated in terms of the



190 D. A. Horn, J. Imberger and G. N. Ivey

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

W
–1

 =
 g

o
/h

1

Regime 5
(bores & billows)

Regime 3
(supercritical flow)

Regime 2
(solitons)

Regime 1 (damped linear waves)

(A)

Tb< Ti/4

Ts< Td

Td< Ts

(A)

(B) (C)

(B)

Regime 4 (K–H billows)

TKH< Ti/4

0.1 0.2 0.3 0.4 0.5

Deep lakes/shallow thermocline

Shallow lakes/deep thermocline

h1/H

Figure 2. The regime boundaries for the laboratory experiments, plotted in terms of the amplitude
ratio of the initial basin-scale wave ηo/h1 and the depth ratio h1/H . A typical interface thickness
δρ ≈ 1 cm was used to determine the timescales TKH and Td. The laboratory observations described
in § 3.2 are also plotted (?, K-H billows and bore; �, broken undular bore; 4, solitons;
�, steepening; e, damped linear waves).

amplitude of the initial basin-scale seiche ηo and the depth of the interface h1. Since
the magnitude of the coefficient of the nonlinear term in (2.17) depends on the ratios
ηo/h1 and h1/H , we choose these as axes for the regime diagram in figure 2. The
damping timescale Td and the shear instability timescale TKH both depend on other
characteristics of the lake and stratification (in particular on L, g′ and δρ), so the
regime boundaries need to be calculated individually for each lake. As an example,
figure 2 has been calculated for the laboratory experiments. In § 4 we present regime
diagrams calculated for several lakes.

We now define five regimes in each of which different mechanisms are expected to
dominate.

2.7.1. Regime 1 (damped basin-scale wave): Td < Ts

When the amplitude of the initial basin-scale wave is too small to generate shear
instabilities (TKH > Ti/4) or supercritical conditions (Tb > Ti/4), the degeneration
of the initial wave is determined by the competition between viscous damping and
nonlinear steepening. If the timescale for damping is shorter than the timescale for
nonlinear steepening, the amplitude of the initial internal seiche will be damped
before it can steepen and evolve into solitons. The basin-scale wave retains many
of the characteristics of the theoretical linear wave and linear analysis captures the
dynamics of the resulting mean flow. The largest-amplitude seiche that will be damped
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before it evolves into solitons is determined by setting Td = Ts using (2.21) and (2.18):

W−1 =
ηo

h1

=
γd

3

(
h2

h2 − h1

)
(2.27)

where γd is defined by (2.26) in our laboratory experiments and by (2.22) in lakes. We
note that γd is a function of the Ti, and therefore of the length of the lake and the
strength of the stratification (and of δρ in the laboratory experiments). Figure 2 shows
that the response is expected to be linear only for very small amplitudes, or when the
interface is near the mid-depth. In this regime the energy is dissipated directly from
the basin-scale wave without cascading through smaller wavelengths.

2.7.2. Regime 2 (solitons): Ts < Td

In this regime the amplitude of the initial basin-scale wave is still too small to
generate shear instabilities (TKH > Ti/4) or supercritical conditions (Tb > Ti/4), but
the initial basin-scale wave will steepen more quickly than it is damped and will
evolve into a train of solitons. The smallest-amplitude seiche that will evolve into
solitons is given by (2.27). Figure 2 shows that Regime 2 covers most of the parameter
space for our laboratory experiments, so that nonlinear steepening is expected to be
an important mechanism for the degeneration of the initial standing waves.

It can be shown that for many natural lakes the boundary between Regimes 1 and 2
occurs between W = 5 and W = 10. The importance of nonlinearity in these systems
raises questions about the initial set-up of the thermocline, the accepted theory of
which is based on assumptions of linearity. This matter will be discussed in more
detail in § 5.

In this regime energy is transferred within the internal wavefield from the low-
frequency basin-scale seiche to much shorter waves with higher frequencies.

2.7.3. Regime 3 (supercritical flow): Tb < Ti/4, Ts > Ti/4

This defines the regime in which the flow becomes supercritical before the initial
wave can degenerate by any other mechanism and a bore forms. This process is
usually accompanied by significant dissipation and mixing due to localized shear-
induced turbulence associated with the bore. Setting Tb to its maximum value of Ti/4
yields the amplitude ηo of the smallest seiche that might degenerate into an internal
surge or bore:

W−1 =
ηo

h1

=

(
h2

2H

h3
1 + h3

2

)1/2

. (2.28)

We add the condition that TKH > Ti/4 to exclude conditions in which both billows
and bores might exist together (Regime 5).

For h1 � H , 2.28 can be simplified to W−1 ≈ 1, under which conditions the
thermocline reaches the surface. Upwelling leads to the development of a highly
nonlinear density front causing mixing and deepening of the surface layer (Monismith
1986), all of which conspire to disrupt wave motion.

2.7.4. Regime 4 (Kelvin–Helmholtz billows): TKH < Ti/4, Tb > Ti/4

In this regime, if TKH < Ti/4 the wave-induced shear across the thermocline causes
the local Richardson number to fall below 0.25 and Kelvin–Helmholtz billows form
at the node. By setting TKH = Ti/4 in (2.15) the minimum-amplitude seiche that will



192 D. A. Horn, J. Imberger and G. N. Ivey

A B C
147 cm 155 cm 155 cm 143 cm

2 cm
Axis of rotation

Length, L = 600 cm

D
ep

th

H
 =

 2
9 

cm

(a)  Tank dimensions

(b)  Initially tilted tank

(c)  Initial condition with the tank horizontal and the
        interface inclined

Figure 3. Schematic diagram of the experimental set-up. The ultrasonic wavegauges were located
at the positions marked A, B and C. (b, c) The tank and the density structure immediately before
and after an experiment commences.

generate billows is given by

W−1 =
ηo

h1

=
2

Q

(
δρh2

Hh1

)1/2

(2.29)

where Q, from (2.16), has been added to take account of viscosity. We add the
condition that Tb > Ti/4 to exclude conditions in which both billows and bores
might exist together (Regime 5).

The stability of the interface to Kelvin–Helmholtz billowing is determined by the
depth and thickness of the interface. For a given interface thickness, the minimum-
amplitude seiche that will cause billowing decreases as the depth of the surface layer
increases. Shear instabilities generated by a basin-scale standing wave can only be
expected for large-amplitude waves when the Wedderburn number is greater than
about 1, although slightly smaller angles of tilt may generate sufficient shear when the
interface is near mid-depth. When shear instabilities do occur, the turbulent collapse
of the billows leads to a transfer of energy from the initial wave directly to turbulent
scales and to an increase in the background potential energy of the stratification.

2.7.5. Regime 5 (bores and billows): TKH < Ti/4, Tb < Ti/4

For large initial interface tilts (small Wedderburn numbers) it is possible that the
layer velocities can be supercritical and the shear sufficient to generate billows. In
these cases both mechanisms happen relatively quickly (faster than Ti/4). Whereas
the supercritical bores appear and propagate from the ends of the basin, any billow-
ing will first occur at the central node of the basin-scale wave. Regime 5 describes
conditions under which both these mechanisms can occur simultaneously. It is re-
stricted to conditions that might result from very strong winds causing upwelling of
the thermocline.

3. Laboratory experiments
3.1. Experimental set-up

The laboratory experiments were carried out in a fully enclosed clear acrylic tank
600 cm long, 29 cm deep and 30 cm wide. The tank could rotate about a horizontal
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axis approximately through its centre so that the interface could be initially tilted. A
schematic diagram of the tank is shown in figure 3.

To establish the stratification the tank was tilted through its maximum angle
(approximately 23◦) and partly filled with the volume of fresh water necessary for the
upper layer. Salt water at the correct density was then allowed to slowly flow into the
bottom of the tilted tank, underneath the previous lighter layer. For flow visualization
the interface or one of the layers was dyed. When the tank was completely filled it was
slowly rotated to a horizontal position and the density profile measured by vertically
traversing a conductivity sensor and thermistor through the tank. The slow rotation
of the tank to a horizontal position stretched the isopycnal surfaces, reducing the
interface thickness and increasing the density gradient within the interface. Using this
method, initial interface thicknesses of less than 1 cm were consistently achieved. The
tank was then very slowly rotated to the required initial angle of tilt.

To commence the experiment the tank was quickly returned to a horizontal position
so that the interface was then inclined at the original angle of tilt of the tank,
simulating the tilted thermocline in a lake. The resulting flow was recorded on
video and still photographs and the interface displacement measured by ultra-sonic
wavegauges (Michallet & Barthélemy 1997). After the completion of the experiment,
when the motion was considered to be once more quiescent, a final density profile
was measured using a conductivity sensor and thermistor.

The experimental variables considered in this study, together with the resolution
with which they were determined, were: the angle of tilt, θ (±0.03◦), the interface
depth, h (±0.2 cm), and the interface thickness, δρ (±0.2 cm). The overall density
difference between the upper and lower layers was kept approximately constant at
∆ρ ≈ 20 kg m−3 (±2 kg m−3). The angle of tilt was varied between θ = 0.125◦ and
θ = 2.77◦, the upper limit being the maximum angle before the interface surfaced
when the interface was at mid-depth. The depth ratios for the two-layer experiments
ranged between h/H = 0.2 and h/H = 0.5. Each time the tank was filled with a
particular interface depth a set of experiments was carried out with increasing angles
of tilt. This resulted in a gradual thickening of the density interface over the set,
typically from approximately 1 cm to 2 cm.

In the laboratory experiments the interface was generally below the mid-depth
position so that the lower layer was the thinner layer. This is the reverse of the
stratification found in most lakes in which the surface layer (epilimnion) is usually
thinner than the lower layer (hypolimnion). However, this apparent reversal does not
alter the physics of the system in the laboratory experiments (with a rigid lid and
constant depth) and was necessary to accommodate the ultrasonic wavegauges. When
referring to the laboratory experiments the layer suffix has been dropped, so that the
thin layer is referred to simply as h.

3.2. Experimental results

When the initially tilted tank was returned to the horizontal the fluid immediately
responded to the baroclinic pressure gradient, the lower layer flowing towards the
downwelled end and the upper layer flowing in the opposite direction towards the
upwelled end. Figure 4 shows a sequence of photographs from an experiment in
which the initial basin-scale wave steepened into an internal surge which then evolved
into a packet of solitons (h/H = 0.3, θ = 1.5◦, η0/h = 0.9). The evolving wavefield
is best observed by examining the time series of interfacial displacements recorded
by the ultrasonic wavegauges, one of which was located near the centre of the tank
(x ≈ 3.0 m) and the others at the 1/4 and 3/4 positions (x ≈ 1.5, 4.5 m). Any linear
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(a)

(b)

(c)

(d )

(e)

( f )

Figure 4. Photographs showing the steepening of an inital basin-scale wave to form a packet of
solitons. The photographs show the whole 6 m length of the tank. The evolving train of solitons is
propagating from left to right in panels (b)–(d), from right to left in panel (e) and from left to right
in panel (f). (h/H = 0.3, θ = 1.5◦, η0/h = 0.9).

basin-scale standing wave resulted in very small interfacial displacements near the
central node, but caused much larger displacements at the 1/4 and 3/4 positions.
The asymmetry introduced by any steepening of the basin-scale wave disrupted the
standing wave pattern, increasing interfacial displacements at the centre of the tank.
Figures 5 and 6 show typical time series from the wavegauge at the centre of the tank
for a number of experiments with varying initial tilts and depth ratios.

In those experiments in which the nonlinearity was very weak (that is, for very small
angles of tilt or when the interface was near the mid-depth) the interface oscillated
as a basin-scale wave until the motion was damped by viscous effects. However, as
the nonlinearity of the initial wave was increased (by increasing the angle of tilt or
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by reducing the depth of the thinner layer), the initial basin-scale wave was observed
to steepen and evolve into a train of solitons. In some experiments with large tilts
or small depth ratios an undular bore was observed, sometimes with local shear
instabilities and turbulence.

That the shorter waves are solitons that have evolved from the nonlinear steepening
of the initial condition has been confirmed by the authors in a separate work (Horn
et al. 2000).

Figure 2 plots the observations from the laboratory experiments on the regime
diagram determined by the timescales developed in § 2. It can be seen that the
experimental data generally comply with the regime classification. The points marked
(A) showed signs of steepening but no solitons emerged before the wave was damped
by boundary losses. The two points marked (B) lie just within Regime 4 when billows
are expected but no billows were observed. This is most likely explained by the
comment made in § 2.3 that (2.15) may underestimate the shear required to generate
billows in an accelerating flow (Thorpe 1971). The point marked (C) was the only
experiment in which bores and billows were observed and lies on the boundary of
Regime 5. The experimental results confirm the general applicability of the timescale
analysis and the regime classification, although the regimes in which supercritical flow
is expected are poorly represented.

3.2.1. Increasing the angle of tilt

Figure 5 shows the effect of increasing the initial angle of tilt for a fixed interface
depth (h/H = 0.3). For small angles of tilt (θ = 0.25◦) the measured interfacial
displacements were very small, due partly to the small amplitude of the wave but also
because the wavegauge was located very near the central node of the basin-scale wave.
In this case some steepening of the waveform was observed but no solitons emerged
and the wave was damped by viscous effects. As the angle of tilt was increased to
θ = 0.5◦ the basin-scale wave was observed to steepen and evolve into a train of
nonlinear waves. The evolution of these nonlinear waves can be followed in figure 5
as the waves repeatedly passed the wavegauge after reflecting from the ends of the
tank. The emerging nonlinear waves were amplitude dispersive and we will refer to
them as solitons. As predicted by the theory presented in § 2.4, as the angle of tilt
was further increased the basin-scale wave was observed to steepen and evolve into
solitons more quickly. The number and amplitude of the emerging waves increased
with the amplitude of the initial basin-scale wave.

When the angle of tilt was sufficiently large (θ = 1.5◦ for h/H = 0.3) the fluid in
the thinner layer was seen to pile up at the downstream end of the tank and then
propagate away from the wall as an internal bore. In figure 5(e) the central wavegauge
signal shows the passage of an internal bore. The bore is undular but higher frequency
components in the signal confirm that the bore was initially turbulent. The turbulence
was observed to dissipate and the bore evolved into a train of large solitons. A
comparison of the initial and final density profiles confirmed an increase in the
potential energy of the system due to mixing by the bore. Similar internal bores were
observed for the maximum tilt angles for each depth ratio. In all cases these bores
quickly evolved into a packet of solitons. The waves propagated as waves of elevation
from the downwelled end of the tank (recall that the lower layer is the thinner layer in
the laboratory), except when the interface was at mid-depth when bores were observed
propagating from both ends. Three of the observations of broken undular bores lie
in Regime 2, indicating that these bores were generated by the rapid steepening of
the basin-scale wave, not as a result of supercritical flow conditions.
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Figure 5. The nonlinearity of the system increases with increasing tilt angle. In these experiments
the tilt angle θ determines the amplitude ηo of the initial basin-scale wave. As the angle of tilt
increases, the initial wave is observed to steepen more quickly and the number and amplitude of
the emerging solitary waves increases. The solitons were observed to emerge between the vertical
dotted lines. The interfacial displacements measured by the wavegauge in the centre of the tank.
For the time series shown h/H = 0.3 and Ti = 109 s.

3.2.2. Decreasing the depth ratio

Figure 6 shows the effect of increasing the nonlinearity of the system by reducing
the thickness of the thinner layer h for a fixed initial angle of tilt θ = 0.5◦. When the
interface was located at mid-depth it was observed to oscillate as a linear basin-scale
wave and the measured interface displacements at the centre of the tank were very
small. When the interface is at mid-depth, the nonlinear coefficients in (2.17) and
(2.19) vanish, confirming that nonlinear steepening is not expected. However, when
the interface was moved away from the mid-depth position the basin-scale wave was
observed to steepen and evolve into nonlinear waves. As predicted by the theory
presented in § 2.4, as the depth of the thinner layer was reduced the initial wave was
observed to steepen more quickly and the number and amplitude of the emerging
waves increased. In this way, increasing the nonlinearity of the system, either by
increasing the amplitude of the initial disturbance or by reducing the depth of the
thinner layer, was observed to have a similar effect.
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(b) h/H = 0.4, go/h = 0.23, Ti =102 s (Regime 1–2)

(c) h/H = 0.3, go/h = 0.30, Ti =109 s (Regime 2)

(d ) h/H = 0.2, go/h = 0.45, Ti =125 s (Regime 2)

Figure 6. The nonlinearity of the system is increased as the depth ratio h/H decreases (as the
thickness of the thinner layer is reduced). As the depth ratio is decreased, the initial wave is
observed to steepen more quickly and the number and amplitude of the emerging solitons increases.
The solitons were observed to emerge between the vertical dotted lines. For the time series shown
θ = 0.5◦. The interfacial displacements were measured by the wavegauge in the centre of the tank.

3.2.3. Steepening timescale

The experimental time series were used to determine the constant of proportionality
in (2.18). Ts is intended to be indicative of the time at which nonlinear steepening is
balanced by dispersive effects. This should be accompanied by the first emergence of
solitons from the steepening large-scale wave. We define the emergence of solitons as
the time when the waves are sufficiently well separated that the depth (measured from
the crest of the leading wave) of the trough between the leading solitons (measured
from the crest of the leading wave) is 25% of the amplitude of the leading wave.
Although this definition is somewhat arbitrary, it provides a consistent measure for
comparing observations from different experiments and field studies. Figure 7 confirms
that the constant of proportionality is 1. The error bars in figure 7 indicate that Ts is
estimated to lie between observations at two wavegauges separated by 1.5 m or 3.0 m.
The time during which solitons emerged is also shown on each of the time series in
figures 5 and 6.

3.2.4. Shear instabilities

Shear instabilities induced by the basin-scale wave were only observed in one exper-
iment in which the interface was at mid-depth and was inclined through the maximum
angle (h/H = 0.5 and θ = 2.77◦). In other experiments in which the amplitude of the
initial condition should have been sufficient for seiche-induced shear instabilities, it
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Figure 7. Observed times for the emergence of solitons and the steepening timescale Ts calculated
using (2.18). Solitary waves usually emerged between wavegauges and the triangles indicate the
observed times at which the leading soliton passed a wavegauge.

Figure 8. Photograph showing the collapse of Kelvin–Helmholtz billows in the centre of the tank
while small bores propagate from each end. This was the only experiment in which billows were
observed (h1/H = 0.5, θ = 2.77◦).

appears that the formation of nonlinear waves extracted energy from the basin-scale
wave, preventing billowing. In the experiment in which billows were observed, small
bores also formed simultaneously at each end of the tank. However, since h1 ≈ h2,
the weakness of the nonlinearity in the system appears to have limited the transfer of
energy from the basin-scale wave. Figure 8 shows the twin bores propagating towards
the centre of the tank as the billows collapse. The formation of bores at both ends of
the tank was only possible because of the symmetry of the stratification.

In some experiments large-amplitude surges and solitons were observed to generate
localized shear instabilities as they propagated through the tank. These instabilities
originated at the crest of the wave (always a wave of elevation in the laboratory
set-up) and continued down the back face.

The mixing and enhanced dissipation caused by these wave-induced shear insta-
bilities extracted energy from the soliton, reducing its amplitude to below the critical
value (Bogucki & Garrett 1993).

Shear instabilities were also observed during the reflection of solitary waves from
the vertical ends of the tank. When a train of solitons was reflected from the endwall
it set up a pattern of standing waves that, when the interface was thin, induced shear
instabilities at the nodes of the standing waves similar to those observed by Thorpe
(1974).
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Figure 9. The field observations from table 1 are plotted on individual regime diagrams. The
regime boundaries are determined separately for each lake by: Td = Ts (—), Tb = Ti/4 (· · ·) and
TKH = Ti/4 (–·–·–). The value used for the sand grain roughness is e = 6× 10−2 m.

4. Field observations
To determine the applicability of the analysis to real lakes we examined published

observations from a number of lakes, most of which are narrow enough that the
Earth’s rotation is not expected to be significant, while in the last example in Lake
Biwa the basin-scale response is a Kelvin wave. The various timescales described in
§ 2 have been calculated for each lake and the predicted degeneration mechanism is
compared with field observations. The field observations are plotted on figure 9 and
summarized in table 1.

Loch Ness is a long narrow deep lake that is aligned with the prevailing south-
westerly wind. The internal seiche in Loch Ness has been observed to be highly
nonlinear and often take the form of an internal surge or solitary waves (Thorpe,
Hall & Crofts 1972; Thorpe 1977). We consider the data presented by Thorpe et
al. (1972) relating to observations of what they describe as a typical surge observed
on October 2–3 1971. A strong south-west wind (> 13 m s−1) blew from the evening
of September 30 until the afternoon of October 1 and then eased until it was calm
on October 3. Thermistor records clearly show the arrival near the centre of the
loch of an undular surge at 2200 h on October 2. The surge propagated towards
the north-eastern end of the loch with a speed of 0.36 m s−1 and resembled a train
of internal waves with a wavelength of about 1 km. Using the data from Thorpe
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Lake Dates Observations W =
h1

ηo
Regime

Loch Nessa Oct. 2–3 1971 ‘pronounced front or surge’ 3 2
Lake of Zurichb Sept. 11–14 1978 ‘steep fronted solitary wave’ 3 2
Windermerec Aug. 14–20 1951 ‘damped harmonic oscillations’ 5 1–2

Sept. 13–17 1951 ‘oscillatory waves’ with 3 1–2
some steepening

Babine Laked July 5–10 1973 ‘surges’ 2 2
Aug. 12–15 1973 ‘steep shock front’ 3 2
Oct. 2–7 1973 ‘surges’ and ‘solitary waves’ 2 2

Seneca Lakee Oct. 14–21 1968 ‘surges’ consisting of trains 2 2
of ‘solitons’

Kootenay Lakef July 13–Aug. 17 ‘surges’ consisting of waves 2 2
1976 resembling ‘solitons’

Balderggerseeg Nov. 1–15 1978 ‘asymetrical waves’ 9 2
Nov. 16–22 1978 ‘steepened wave front...described as 2 2

an internal surge’
Lake Biwah Sept. 4–13 1993 ‘undular bores and solitary waves’ 1 2

Table 1. Examples of field observations, together with the calculated Wedderburn numbers and
predicted regimes. Most of these lakes fall within Regime 2, in which nonlinear steepening is
expected to dominate the degeneration of the initial seiche, except Windermere which lies near the
boundary with Regime 1 in which the response is expected to be linear. (References: a Thorpe et
al. (1972), b Mortimer & Horn (1982), c Heaps & Ramsbottom (1966), d Farmer (1978), e Hunkins
& Fliegel (1973), f Wiegand & Carmack 1986, g Lemmin (1987), and h Saggio & Imberger (1998).)

et al. (1972) it can be seen that Loch Ness falls clearly within Regime 2 over this
period (TKH > Ti/4, Tb > Ti/4, Ts < Td) and so we would expect to see the initial
basin-scale seiche steepen and evolve into a train of solitons. Our timescale analysis
supports previous interpretations that the undular surge observed in Loch Ness is
generated by the nonlinear steepening of a basin-scale wave.

Mortimer & Horn (1982) present data from thermistor chains at five stations
along the length of the Lake of Zurich. They suggest that the thermistor records
from September 1978 show an internal surge generated by the interaction of the
downwelling thermocline with the end of the lake. A strong wind blew towards
the southern end of the lake until midday on September 12, tilting the thermocline
over the length of the lake. After the wind dropped a strong surge was recorded
propagating southwards from the northern end of the lake and solitary waves were
seen to evolve (Mortimer & Horn (1982) also comment on a smaller surge propagating
north before the wind ceased, which was probably generated during the set-up of the
thermocline).

To investigate the possible generation mechanisms for the observed internal surge
we consider the degeneration timescales calculated from the data in Mortimer & Horn
(1982). Calculations show that Tb > Ti/4 so that the observed surge is unlikely to
have been an internal bore generated by the mechanism described in § 2.5. However,
Ts < Td so that the initial basin-scale wave would steepen and evolve into solitary
waves, and since Ti > Ts > Ti/2, the solitary waves would be expected to emerge
propagating southwards, as observed.

Heaps & Ramsbottom (1966) applied their analytical linear two-layer model to
Windermere and showed that the results compared well with field data. Together with
the observation that the dominant response of the lake is a damped basin-scale wave,



Degeneration of large-scale interfacial waves 201

this suggests that nonlinear effects do not play an important role in Windermere.
Table 1 presents observations and the regime for Windermere using the data presented
by Heaps & Ramsbottom (1966) for two periods: August 14–20 and September 13–
17, 1951. We see that TKH > Ti/4 and Tb > Ti/4, so that neither seiche-induced
shear instabilities nor internal bores are expected to occur. However, Ti < Ts < Td
suggesting that we would see the initial basin-scale seiche gradually steepen over
about two periods, although the waves would also be substantially damped during
this time. The plots presented in Heaps & Ramsbottom (1966) show some steepening
of the basin-scale wave but there is no evidence of solitary waves emerging.

Farmer (1978) describes observations of long nonlinear internal waves and surges
in Babine Lake. These surges took the form of a train of short-period waves which
were identified as solitons. The timescale comparison shows that Babine Lake lies in
Regime 2, supporting the conclusion by Farmer (1978) that the solitons are generated
by the nonlinear steepening of an initial depression of the thermocline at the southern
end of the lake. In the case of Babine Lake, the variable width of the lake is also
expected to effect the rate of steepening; the narrower section approximately halfway
along the lake would enhance steepening.

Although the timescale derivations do not include rotational effects, the internal
wave spectra and thermistor records from Lake Biwa motivated aspects of this study
so we include it here. For the purposes of this analysis we assume that the basin-scale
Kelvin wave steepens as it travels along the perimeter of the lake in an equivalent
way to the steepening of a non-rotating seiche. The results of spectral analysis and
numerical modelling presented by Saggio & Imberger (1998) confirmed that the basin-
scale response of the lake was composed of Kelvin and Poincaré waves and that these
waves are energized directly by the wind. However, following the passage of a storm,
a high-frequency peak also appeared in the spectra which was attributed to undular
bores and solitons evident in the thermistor record. The timescale comparison shows
that Lake Biwa falls within Regime 2, suggesting that these high-frequency nonlinear
waves might be associated with the steepening of the basin-scale Kelvin wave. The
evolution of nonlinear waves in rotating systems is sufficiently different (e.g. Fedorov
& Melville 1995), however, to require further investigation before this analysis can be
extended to include rotating systems.

Table 1 also includes the degeneration timescales for Seneca Lake, Kootenay Lake
and Balderggersee. These lakes all display a highly nonlinear response to moderately
strong wind events and internal surges are predicted by the comparison of timescales.

5. Discussion
The laboratory experiments presented in § 3 together with the field observations

described in § 4 confirm the applicability of the proposed timescale analysis and regime
classification. The analysis suggests that most lakes fall within Regime 2, in which
nonlinear steepening is expected to dominate the degeneration of an initial basin-scale
wave. Furthermore, nonlinear effects are likely to be important in characterizing a
lake’s initial response to an applied wind stress.

Regime 1, in which the initial basin-scale wave is damped as quickly as it can
steepen, applies only to very small-amplitude seiches. For the lakes considered in § 4,
except Windermere, wind events of duration Ti/4 with wind speeds exceeding 3–
4 m s−1 would generate basin-scale waves that would steepen into solitons. However,
in the case of Windermere, the greater depth of the thermocline relative to the overall
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depth (h1/H = 0.4) means that the response will remain linear for wind speeds up to
7–10 m s−1.

Although it is possible to generate seiche-induced shear instabilities in the labo-
ratory (in extreme cases), field observations of such events are rare; observed shear
instabilities are usually associated with large-amplitude surges and solitons. Shear
instabilities (Regime 4) were found to be restricted to large-amplitude seiches when
the interface is near mid-depth. Other waves, either generated during the initial set-up
of the thermocline or after the removal of the wind stress, steepen and evolve into
solitons before billows develop.

Previous field studies have described the evolution and propagation of internal
surges in many lakes. In the laboratory and field data examined, our analysis suggests
that the observed internal surges were all generated by the nonlinear steepening
of an initial wave (Regime 2). The initial seiche amplitude required to generate
the supercritical flow necessary for the formation of an internal bore (Regime 3)
corresponds to upwelling of the thermocline which was not observed in the cases
considered. As described in § 2.7, such upwelling events lead to the development
of a highly nonlinear density front, accompanied by turbulent mixing, horizontal
dispersion and deepening of the surface layer, all of which extract energy from the
initial condition and generally disrupt wave evolution and propagation. We conclude
that the internal surges so often observed are generated by nonlinear steepening.

5.1. Energetics of nonlinear steepening

The generation of solitons by nonlinear steepening in Regime 2 results in a transfer
of energy from the basin scale to much smaller scales. Internal wave spectra from
Lake Biwa Imberger (1994) clearly show that major wind events result in an increase
in the energy of basin-scale waves and an increase in the energy at smaller scales,
near the buoyancy frequency. Saggio & Imberger (1998) postulated that these high-
frequency waves were the result of interaction of the basin-scale waves with the lake
bathymetry. The analysis presented above suggests that these high-frequency waves
also include internal surges and solitons generated by the nonlinear steepening of the
initial basin-scale wave. Hutter et al. (1998) also found that nonlinear effects were
responsible for many of the small-scale features observed in the internal wavefield of
other lakes.

The temporal development of the internal wave spectra of the laboratory exper-
iments was examined using a continuous wavelet transform. Figure 10 shows the
time–frequency plot for one experiment in which the basin-scale wave was seen to
steepen and evolve into a train of solitons. The energy transfer from low to higher
frequencies coincides with the emergence of the solitons. Importantly though, energy
appears to be transferred directly from the basin-scale wave to the solitons at about
t = 200 s (Ts = 210 s for this experiment). Although there is some energy at wave-
lengths separating the initial basin-scale wave and the emerging solitary waves, there
is no evidence of energy cascading through these intermediate scales. In the internal
wave spectra for lakes, the low-frequency basin-scale waves and the high-frequency
solitons are more widely separated. However, nonlinear steepening is not expected
to contribute to the generation of waves in the intermediate ω−2 range or to the
maintenance of the apparently universal spectral shape; the source of these waves is
an important outstanding issue.

The transfer of energy within the internal wave spectrum from the basin scale to
smaller scales has important consequences for the subsequent cascade of energy to
turbulent scales. Internal solitons can induce large shears that can lead to localized
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Figure 10. Time–frequency analysis of a laboratory nonlinear steepening event. The upper panel
shows the interface displacement measured by a wavegauge in the centre of the tank. The lower
panel shows the time-varying energy spectra calculated using a continuous wavelet transform. For
this experiment h2/H = 0.3 and θ = 0.5◦ (see figure 5b).

shear instabilities and breaking. Although the total energy of a wave is approximately
constant during steepening, the reduction in horizontal lengthscale acts to increase the
energy density of the wave, increasing the likelihood of breaking. This was observed
in our laboratory experiments and has been recorded in Loch Ness (Thorpe 1977)
and the Lake of Zurich (Mortimer & Horn 1982). These local shear instabilities result
in turbulent patches in the interior of the lake with locally increased dissipation and
mixing. However, energy is only extracted from the solitary waves until they decay
below a critical amplitude (Bogucki & Garrett 1993).

A more significant feature in terms of energy dissipation is the shoaling of solitons
at sloping boundaries (Helfrich 1992; Michallet & Ivey 1999). Michallet & Ivey
(1999) have shown that solitary waves lose up to 70% of their energy in a single
reflection from typical lake slopes. This explains the observation of Saggio & Imberger
(1998) that the high-frequency peaks in the internal wave spectra are very short-lived.
Whereas an initial basin-scale wave would be reflected from the sloping ends of a
lake (since to these waves the boundaries appear very steep), the transfer of energy
from the basin-scale wave to shorter solitons causes most of the energy to be quickly
dissipated at the boundaries, increasing the overall rate of dissipation. In this way,
breaking solitons are a source of energy for mixing in the benthic boundary layer,
which has important implications for water quality in lakes. The timescale for the
formation of solitons determines where and in what direction the solitons emerge
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and, hence, where the waves will shoal and dissipate their energy. This suggests that
the benthic boundary layer will not be uniform around the perimeter of a lake, but
will be more active in regions where solitons first shoal.

The generally accepted picture of the processes leading to the tilting of the ther-
mocline during a wind event is based on linear analysis (e.g. Heaps & Ramsbottom
1966; Spigel & Imberger 1980). However, numerical modelling has demonstrated the
importance of nonlinear effects in the initial response of a lake to an applied wind
stress (Hutter et al. 1998), a conclusion confirmed by the results presented here. The
effects of seiching on processes such as mixed-layer deepening (Spigel 1980) should be
re-examined to include the degeneration of these basin-scale waves due to nonlinear
steepening.

The laboratory experiments and analysis for this study did not include the effects
of topography. As well as the role played by sloping boundaries in the dissipation
of internal wave energy, the sloping ends of a lake and features such as sills and
contractions are all likely to enhance the steepening of basin-scale waves, reducing
the time taken for the emergence of solitons. The generation of the internal surge by
the interaction of the downwelling thermocline with the sloping boundary postulated
by Mortimer & Horn (1982) may well be an example of topographic enhancement of
nonlinear steepening.

5.2. Implications for modelling and data analysis

The significant role played by nonlinear steepening and solitons in the degeneration
of basin-scale internal waves also has implications for the way in which we model
the hydrodynamics of such systems. Most numerical models employed to study the
hydrodynamics of lakes make the hydrostatic approximation. While these models have
been used to satisfactorily simulate most flows, by neglecting vertical accelerations
they are unable to capture the evolution and propagation of solitons and therefore the
transfer of energy from the basin-scale seiche to these shorter waves. These models will
be unable to predict the subsequent rapid dissipation and mixing caused by shoaling
solitary waves, the location and timing of which may be important in determining
water quality. It is important to quantify the energetics of nonlinear steepening in
lakes to determine the significance of this omission from this large class of numerical
models.

6. Conclusions
We set out to investigate one aspect of the energy cascade in lakes – the degeneration

of basin-scale interfacial waves. By identifying a number of possible mechanisms and
comparing the timescales over which they act, regimes have been identified in which
particular mechanisms are expected to dominate the degeneration of an initial basin-
scale internal wave. Predictions based on this comparison of timescales have been
shown to compare well with both laboratory experiments and field observations. Most
lakes are expected to fall within Regime 2, in which nonlinear steepening of the initial
basin-scale wave results in the generation of solitons.

We can now add to the description of the evolution of the internal wave spec-
trum proposed by Saggio & Imberger (1998) by including the effects of nonlinear
steepening. The main source of energy for the internal wavefield is the action of
the wind blowing over the surface of the lake, generating low-frequency basin-scale
waves. These basin-scale waves may interact with the lake bathymetry to generate
higher-frequency waves. However, in most lakes the basin-scale waves also steepen
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due to nonlinear effects, evolving into internal surges and solitons with much shorter
lengthscales and higher frequencies. These solitons are short-lived, shoaling and break-
ing at the sloping boundaries, transferring most of their energy to turbulence in the
benthic boundary layer. In this way, nonlinear steepening enhances the transfer of
energy from the initial basin-scale waves to the turbulent benthic boundary layer.
The fraction of energy cascaded through solitons by this mechanism has yet to be
quantified but is important in determining the overall energy flux path in lakes.
The energy transfers accompanying nonlinear steepening are directly from the basin
scale to the solitons and not through intermediate wavelengths. The mechanisms that
maintain the observed ω−2 slope of the internal wave spectra in most lakes remain
to be identified.

Following a wind event, the steepening timescale Ts determines where and in which
direction solitons first emerge from the initial seiche. In some lakes solitons are
observed to propagate in only one direction and hence shoal at only one end of the
lake. This suggests that the turbulent benthic boundary layer would be more active at
the end where shoaling occurs, with important implications for the spatial variability
of water quality in those lakes.

The derivation of the various degeneration timescales considered did not include
the effects of rotation or of higher vertical modes. However, it would be possible
to derive appropriate timescales for both of these effects in order to extend the
description to include lakes in which rotation can no longer be ignored or in which
the two-layer approximation is no longer valid. Furthermore, the analysis excluded
topographic effects which are expected to play an important role in determining the
rate of steepening of an initial basin-scale internal wave.

The evolution, propagation and shoaling of solitons appear to be important pro-
cesses in most lakes and yet they are not captured by numerical models that use
the hydrostatic approximation. Further work should be undertaken to quantify the
energy transfers associated with these processes so that the significance their omission
can be determined.
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